
Abstract    Intel Ethernet Flow Director is an advanced
network interface card (NIC) technology. It provides the benefits
of parallel receive processing in multiprocessing environments
and can automatically steer incoming network data to the same
core on which its application process resides. However, our
analysis and experiments show that Flow Director cannot
guarantee in-order packet delivery in multiprocessing
environments. Packet reordering causes various negative
impacts. In this paper, we use a simplified model to analyze why
Flow Director can cause packet reordering. Our experiments
verify our analysis.

Index Terms – Packet Reordering, Flow Director, TCP, NIC.

I. Introduction

Computing is now shifting towards multiprocessing. The
fundamental goal of multiprocessing is improved performance
through the introduction of additional hardware threads,
CPUs, or cores (all of which will be referred to as “cores” for
simplicity). The emergence of multiprocessing has brought
both opportunities and challenges for TCP/IP performance
optimization in such environments. Modern network stacks
can exploit parallel cores to allow either message-based
parallelism or connection-based parallelism as a means of
enhancing performance. To date, major network stacks like
Windows and Linux have been redesigned and parallelized to
better utilize additional cores. While existing OSes exploit
parallelism by allowing multiple threads to carry out network
operations concurrently in the kernel, supporting this
parallelism carries significant costs, particularly in the context
of contention for shared resources, software synchronization,
and poor cache efficiencies. However, investigations [1][2]
indicate that CPU core affinity on network processing in
multiprocessing environment can significantly reduce
contention for shared resources, minimize software
synchronization overheads, and enhance cache efficiency.

Core affinity on network processing has the following
goals: (1) Interrupt affinity: Network interrupts of the same
type should be directed to a single core. Redistributing
network interrupts in either a random or round-robin fashion
to different cores has undesirable side effects. (2) Flow
affinity: Packets belonging to a specific TCP flow should be
processed by the same core. TCP has a large and frequently
accessed state that must be shared and protected when packets
from the same connection are processed. Ensuring that all
packets in a TCP flow are processed by a single core reduces
contention for shared resources, minimizes software
synchronization, and enhances cache efficiency. (3) Network
data affinity: Incoming network data should be steered to the

same core on which its application process resides. This is
becoming more important with the advent of Direct Cache
Access (DCA). Network data affinity maximizes cache
efficiency and reduces core-to-core synchronization.

The emergence of parallel network stacks and the necessity
of core affinity on network processing in multiprocessing
environment require new NIC designs. An NIC should not
only provide mechanisms to allow parallel receive processing
to better utilize parallel network stacks, but also to facilitate
core affinity on network processing in multiprocessing
environments. Receive Side Scaling (RSS) [3] is a NIC
technology that steps toward that direction. It supports
multiple receive queues and integrates a hashing function in
the NIC. The NIC computes a hash value for each incoming
packet. Based on hash values, NIC assigns packets of the same
data flow to a single queue and evenly distributes traffic flows
across queues. With Message Signal Interrupt (MSI/MSI-X)
support, each receive queue is assigned a dedicated interrupt
and RSS steers interrupts on a per-queue basis. RSS provides
the benefits of parallel receive processing in multiprocessing
environments. Operating systems like Windows and Linux
now support interrupt affinity. When an RSS receive queue (or
interrupt) is tied to a specific core, packets from the same flow
are steered to that core (Flow pinning). This ensures flow
affinity on most OSes. However, RSS has a limitation: it
cannot steer incoming network data to the same core where its
application process resides. The reason is simple: the existing
RSS-enabled NICs do not maintain the relationship “Traffic
Flows → Network applications → Cores” in the NIC. Since
network applications run on cores, we simply put is as “Traffic
Flows → Cores (Applications).” This is symptomatic of a
broader disconnect between existing software architecture and
multicore hardware. With OSes like Windows and Linux, if an
application is running on one core, while RSS has scheduled
received traffic to be processed on a different core, poor cache
efficiency and significant core-to-core synchronization
overheads will result. The overall system efficiency may be
severely degraded. To remedy the RSS limitation, the Intel
Ethernet Flow Director technology [4] has been introduced.
The basic idea is simple: Flow Director maintains the
relationship “Traffic Flows → Cores (Applications)” in the
NIC. OSes are correspondingly enhanced to support such
capability. Flow Director not only provides the benefits of
parallel receive processing in multiprocessing environments, it
also can automatically steer packets of a specific data flow to
the same core on which its application process resides, which
facilitates core affinity on network processing. However, our
analysis and experiments show that Flow Director cannot
guarantee in-order packet delivery in multiprocessing

Why can Some Advanced Ethernet NICs
Cause Packet Reordering?

Wenji Wu, Phil DeMar, Matt Crawford

environments. TCP performance suffers in the event of severe
packet reordering. It also makes network measurements
inaccurate. In this paper, we use a simplified model to analyze
why Flow Director can cause packet reordering. Our
experiments verify our analysis.

II. Why Does Flow Director Cause Packet Reordering?
Intel Ethernet Flow Director supports multiple receive

queues in the NIC, up to the number of cores in the system.
With MSI/MSI-X and Flow-Pinning support, each receive
queue has a dedicated interrupt and is tied to a specific core;
each core in the system is assigned a specific receive queue.
The NIC device driver allocates and maintains a ring buffer in
system memory for each receive queue. For packet reception,
a ring buffer must be initialized and pre-allocated with empty
packet buffers. The ring buffer size is device and driver-
dependent. For transport-layer traffic, Flow Director maintains
a “Traffic Flow → Core” table with a single entry per flow.
Each entry tracks the receive queue (core) to which a flow
should be assigned. Flow Director makes use of the 5-tuple
{src_addr, dst_addr, protocol, src_port, dst_port} in the
receive direction to identify a flow in the table, and a core ID
to specify the core to which the flow should be assigned.
Entries within the “Traffic Flow → Core” table are updated by
outgoing packets. To support Flow Director, OS must be
multiple TX queue capable [5]. For an outgoing transport-
layer packet, the OS records its processing core ID and passes
it to the NIC to generate or update the corresponding entry
within the table. The passed processing core ID advertises the
core on which a network application resides. For example, a
network application that resides on core i sends an outgoing
packet with the header {(src_addr: x), (dst_addr: y),
(protocol: z), (src_port: p), (dst_port: q)}. The OS records its
processing core ID i and passes it to the NIC. The NIC
generates or updates the corresponding flow entry in the table
as {(src_addr: y), (dst_addr: x), (protocol: z), (src_port: q),
(dst_port: p), (core id: i)}. A flow entry is deleted from the
table after a configurable period of time has elapsed without

traffic.
Fig. 1 illustrates packet receive-processing for transport-

layer packets with Flow Director. (1) When incoming packets
arrive, the hash function is applied to the header to produce a
hash result. Based on the hash result, the NIC identifies the
core and hence, the associated receive queue. (2) The NIC
assigns the incoming packets to the corresponding receive
queues. (3) The NIC deposits via direct memory access
(DMA) the received packets into the corresponding ring
buffers in system memory. (4) The NIC sends interrupts to the
cores associated with the non-empty queues. Subsequently, the
cores respond to the network interrupts and process the
received packets up through the network stack from the
corresponding ring buffers one by one. As for non-Flow-
Director-steering traffic, please refer to [4] for more details.

Flow Director provides the benefits of parallel receive
processing in multiprocessing environments; it also facilitates
core affinity on network processing. However, our analysis
shows that Flow Director cannot guarantee in-order packet
delivery in multiprocessing environments. TCP performs
poorly with severe packet reordering [6]. In the following
section, we use a simplified model to analyze why Flow
Director cannot guarantee in-order packet delivery.

As shown in Fig. 2, at time

€

T −ε , Flow 1’s flow entry maps
to Core 0 in the “Traffic Flow → Core” table. At this instant,
packet S of Flow 1 arrives; based on the table, it is assigned to
Core 0. At time

€

T , due to process migration, Flow 1’s flow
entry is updated and maps to Core 1. At

€

T +ε , Packet S+1 of
Flow 1 arrives and is assigned to the new core, namely Core 1.
As described above, after assigning received packets to the
corresponding receive queues, NIC copies them into system
memory via DMA, and fires network interrupts, if necessary.
When a core responds to a network interrupt, it processes
received packets up through the network stack from the
corresponding ring buffer one by one. In our case, Core 0
processes packet S up through the network stack from Ring
Buffer 0, and Core 1 services packet S+1 from Ring Buffer 1.
Let

€

Tservice (S) and

€

Tservice (S +1) be the times at which the
network stack starts to service packets S and S+1,
respectively. If

€

Tservice (S) >Tservice (S +1) , the network stack
would receive packet S+1 earlier than packet S, resulting in
packet reordering. Let D be the ring buffer size and let the
network stack’s packet service rate be

€

Rservice (packets/s).
Assume there are n packets ahead of S in Ring Buffer 0 and m
packets ahead of S+1 in Ring Buffer 1. Then, it has

€

Tservice (S) =T −ε + n /Rservice and

€

Tservice (S +1) =T +ε +m /Rservice .

If

€

ε is small and

€

n > m , the condition of

€

Tservice (S) >Tservice (S +1) would easily hold and lead to packet
reordering. Since the ring buffer size is

€

D , the worst case is

€

n = D −1 and

€

m = 0, it has

€

Tservice (S) =T −ε + (D −1) /Rservice
and

€

Tservice (S +1) =T +ε . The ring buffer size D is a design

parameter for the NIC and driver. For example, the Myricom
10Gb NIC is 512, and Intel’s 1Gb NIC is 256.

In a multicore system, a general-purpose OS scheduler tries
to use all core resources in parallel as much as possible,

 
Fig. 1 Flow Director Mechanism

 
Fig. 2 Packet Reordering Analysis Model

distributing and adjusting the load among the cores. Process
migration across cores occurs frequently. Flow Director can
easily cause packet reordering in these conditions.

III. Experiments
To validate our analysis, we ran data transmission

experiments over an isolated network. A sender was directly
connected to a receiver via a physical 10Gbps link.

Sender: Dell R-805; 2 Quad Core AMD Opteron 2346HE,
1.8GHz; Myricom 10G Ethernet NIC; Linux 2.6.28.

Receiver: SuperMicro Server; 2 Intel Xeon CPUs, 2.66
GHz; There are totally 4 cores in the system; Intel X520
Server Adapter with Flow Director enabled (configured with
suggested default parameters [5]), 10Gbps, MTU 1500; Linux
2.6.34, Multiple TX Queue Capable.

In our experiments, iperf is used to send n parallel TCP
streams from sender to receiver for 100 seconds.  Iperf is a
multi-threaded network application. With multiple parallel
TCP data streams, a dedicated child thread is spawned and
assigned to handle each stream. In our 1st experiments, we ran 
iperf with port 5001 in the receiver. Iperf is not pinned to a 
specific core. In our 2nd experiments, we pin iperfs with port
5001, 6001, 7001 and 8001 to core 0, 1, 2, and 3, respectively.
Each core is sent with n/4 TCP streams. In both experiments,
Linux was configured to run in multicore peak performance
mode. The receiver was instrumented to record out-of-order
packets and we calculated packet reordering ratios. We also
calculated the overall throughputs. The experiment results
with a 95% confidence interval are shown in Table I and II.

 For the 1st experiments, the degree of packet reordering is
significant. At n =200, packet reordering  ratio  reaches  as 
high  as  0.897%.  The experiment results validated our
analysis. In the 1st experiments, since iperf is not pinned to a
specific core, when the scheduler tries to distribute the load
equally among the cores, it will lead to frequent process
migration. Flow Director can easily cause packet reordering in
these conditions. For the 2nd experiments, no packet reordering
was discovered. In the 2nd experiments each flow is actually 
attached  always  to  a  core,  there  will  be  no  process 
migration. As the condition of

€

Tservice (S) >Tservice (S +1) will not
be met,  Flow  Director  will  not  cause  packet  reordering. 
Therefore, reducing or avoiding process migration is a way 
to help Flow director  to  cause  less/no packet  reordering. 
Process  migrations  in  the  1st  experiments  are  not  only 
degrading  performance,  but  also  causing  packet 
reordering.  In  the  2nd  experiments,  since  each  flow  is 
actually  attached  always  to  a  core,  there  is  strict  core 
affinity  on  network  processing  (interrupt,  flow,  and 
network  data  affinity).  Also,  because  there  is  no  packet 
reordering,  the  negative  effects  caused  by  packet 
reordering do not exist. Therefore, the throughputs  in the 
2nd  experiments  are  higher  than  those  in  the  1st 
experiments.   In the experiments, we noticed that it is the 
Intel X520 10G NIC, instead of CPUs, that limits the overall 
bandwidth. The Intel X520 10G NIC can not reach 10Gbps 
when the flow director feature is turned on. Otherwise, the 

throughputs  in the 2nd experiments would be even higher 
than those in the 1st experiments. 

IV. Conclusion & Discussion
We use a simplified model to analyze why Flow Director

can cause packet reordering in multiprocessing environments.
Our experiments validate our analysis. The finding on packet
reordering and our model can be applied to any other software
that directs packets to the core where the application resides in
the multiprocessing environments. The root cause that Flow
Director can cause packet reordering is because Flow Director
lacks mechanisms to ensure the satisfaction of the inequality
constraint

€

T
service
(S) <T

service
(S +1) when it steers packets across

cores. Reducing or avoiding process migration is a way to help
Flow director to cause less/no packet reordering. However,
this is not a true solution for the Flow Director’s packet
reordering problem. We believe that a possible solution is to
add extra mechanisms within the NIC to ensure the
satisfaction of the inequality constraint

€

Tservice (S) <Tservice (S +1)
when Flow Director steers packets across cores.

REFERENCE

  
[1] J. Salehi, J. Kurose, and D. Towsley, “The effectiveness of affinity-

based scheduling in multiprocessor networking,” IEEE/ACM Trans.
Netw. vol. 4, pp. 516-530, Aug. 1996.

[2] J. Hye-Churn and J. Hyun-Wook, “MiAMI: Multi-core Aware Processor
Affinity for TCP/IP over Multiple Network Interfaces,” in Proc. 2009
IEEE Symposium on High Performance Interconnects, pp. 73-82.

[3] Microsoft Corporation. (2008, November 5). Receive-Side Scaling
Enhancements in Windows Server 2008 [Online]. Available:
http://www.microsoft.com

[4] Intel Corporation. (2010, November). Intel 82599 10GbE Controller
Datasheet [Online]. Available: http://www.intel.com

[5] Intel Corporation. (2010, November 19). IXGBE device driver README
[Online]. Available: http://www.intel.com

[6] W. Wu, P. DeMar, and M. Crawford, “Sorting reordered packets with
interrupt coalescing,” computer networks, vol. 53, no.15, pp. 2646-2662,
2009.

TABLE I
PACKET REORDERING RATIO

n 1st Exp. 2nd Exp.

100 0.705% ± 0.042% 0 ± 0
200 0.897% ± 0.038%

0 ± 0
 500 0.635% ± 0.154%

0 ± 0
 1000 0.409% ± 0.009% 0 ± 0

2000 0.129% ± 0.003% 0 ± 0
TABLE II

THROUGHPUTS (Gbps)
n 1st Exp. (Gbps) 2nd Exp. (Gbps) Relative Incr. (%)

100 6.877 ± 0.006 6.941 ± 0.004 0.9% ± 0.097%
200

6.649 ± 0.006

6.791 ± 0.003

2.14% ± 0.12%

 500

6.202 ± 0.003

6.445 ± 0.002
G

3.91% ± 0.012%
 1000 5.943 ± 0.005 6.172 ± 0.004 3.86% ± 0.154%

2000 5.898 ± 0.008 5.909 ± 0.002 0.2% ± 0.01%

